Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Jozef Kožíšek, ${ }^{\text {a }}{ }^{\text {* Marek Fronc, }}{ }^{\text {a }}$ Ingrid Svoboda, ${ }^{\text {b }}$ Peter Kapitán ${ }^{\text {c }}$ and Tibor Gracza ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic,
${ }^{\mathbf{b}}$ Strukturforschung, FB11 Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstraße 23, D-64287 Darmstadt, Germany, and ${ }^{\text {c }}$ Department of Organic Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava 81237, Slovak Republic

Correspondence e-mail: kozisek@cvt.stuba.sk

## Key indicators

Single-crystal X-ray study
$T=301 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
$R$ factor $=0.025$
$w R$ factor $=0.060$
Data-to-parameter ratio $=18.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

## Dichloro[(4S,4'S)-4,4'-diisopropyl-2,2'-bi-1,3-oxazoline]palladium(II)

The title compound, $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, consists of discrete complex molecules. The palladium center is in a square-planar geometry coordinated by two chloro anions and two N -donor atoms, with mean $\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{N}$ bond distances of 2.278 (1) and 2.029 (2) Å, respectively.

## Comment

The title compound, (I), is a chiral catalyst for kinetic resolution of racemic unsaturated polyols in palladium(II)-catalysed cyclizations.

(I)

The structural investigation of (I) (Fig. 1) has been undertaken in order to better understand the catalytic properties in the series of similar compounds.
The $\mathrm{Pd}-\mathrm{Cl}[2.276(1)$ and $2.279(1) \AA]$ and $\mathrm{Pd}-\mathrm{N}$ [2.022 (3) and 2.036 (3) A ] interatomic distances, as well as the $\mathrm{N}-\mathrm{C} \quad[1.278(5) \AA], \quad \mathrm{C}-\mathrm{C} \quad[1.465(6) \AA] \quad$ and $\mathrm{C}-\mathrm{N}$ [1.276 (5) $\AA$ ] bond distances within the unsaturated fivemembered metallocycle are in good agreement with those found in the Cambridge Structural Database (CSD, Version 1.6, 2003 release; Allen, 2002) for compounds with refcodes ABUYAX (Comerlato et al., 2001) and SUXBAO (Dupont et al., 2001), where the $\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{N}$ bond distances fall in the ranges $2.280-2.308$ and $2.003-2.025 \AA$, respectively. In analogous compounds containing saturated five-membered rings, the corresponding distances are in the range 2.294-2.351


The molecular structure of the title compound, showing the atomnumbering scheme. Displacement ellipsoids are drawn at the $20 \%$ probability level.

Received 29 October 2004
Accepted 11 November 2004
Online 20 November 2004
and 2.017-2.087 $\AA$ for compounds with refcodes SOYQOM (Kuhn et al., 1998), IQUFAB (Boyle et al., 2004), EDTAPD01 (Luo et al., 1999) and LUHRIP (Slyudkin et al., 2002). The main difference in the geometry of saturated and unsaturated metallocycles is in the $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angle, which in (I) and the two above-mentioned unsaturated compounds [79.6 (1), 79.3 and $79.4^{\circ}$, respectively] is significantly smaller than those found in the saturated ones (81.4-85.8 $)^{\circ}$. The only weak hydrogen bonds are intramolecular (Fig. 2 and Table 1) and contribute to the stabilization of the conformer.

## Experimental

The title compound was prepared from $\operatorname{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$ by a modified procedure (Uozomi et al., 1999) for the synthesis of [(S)-2,2'-bis(4,4-dimethyloxazolin-2-yl)-1,1'-binaphthyl]palladium(II) trifluoromethylacetate. A solution of ( $S, S$ ) -2, $2^{\prime}$-bisoxazolyl (Ghosh et al., 1998; Müller et al., 1991; Bolm et al., 1991; $56 \mathrm{mg}, 0.249 \mathrm{mmol}, 1.05$ equivalents) in dichloromethane ( 2 ml ) was added to $\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$ ( $61 \mathrm{mg}, 0.237 \mathrm{mmol}$ ) in dichloromethane $(2 \mathrm{ml})$. The mixture was stirred for 15 min , resulting in a clear solution. The title compound was slowly crystallized by precipitation with $\mathrm{Et}_{2} \mathrm{O}$ to give brown needles [m.p. $525-527 \mathrm{~K},[\alpha]_{D}^{25}=+137(c, 0.162$, MeOH $)$ ].

## Crystal data

$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=401.60$
Monoclinic, $P 2_{1}$
$a=6.3388(13) \AA$
$b=12.790(3) \AA$
$c=10.196(2) \AA$
$\beta=103.7(3) \AA$
$V=803.0(3) \AA^{\circ}$
$Z=2$
$D_{x}=1.661 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3272 reflections
$\theta=3.2-26.3^{\circ}$
$\mu=1.49 \mathrm{~mm}^{-1}$
$T=301$ (2) K
Prism, brown
$0.54 \times 0.20 \times 0.18 \mathrm{~mm}$

## Data collection

Oxford Diffraction Xcalibur CCD diffractometer
$\omega$ scans
Absorption correction: analytical face-indexed (CrysAlis RED; Oxford Diffraction, 2003)
$T_{\text {min }}=0.501, T_{\text {max }}=0.776$
5523 measured reflections

## Refinement

```
Refinement on F
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.026
wR(F}\mp@subsup{F}{}{2})=0.06
S=1.08
3 2 3 9 \text { reflections}
173 parameters
H-atom parameters constrained
w=1/[\mp@subsup{\sigma}{}{2}(\mp@subsup{F}{o}{2})+(0.0239P)}\mp@subsup{)}{}{2
    +0.6348P]
    * +0.6348P]
```

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| C13-H13A $\cdots \mathrm{N} 2$ | 0.96 | 2.73 | $3.047(9)$ | 100 |
| C16-H16A 2 N 5 | 0.96 | 2.63 | $2.960(6)$ | 101 |



Figure 2
Packing diagram, viewed down the $a$ axis. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are shown as dashed lines.

H atoms were positioned geometrically and treated as riding atoms $(\mathrm{C}-\mathrm{H}=0.96-0.98 \AA)$, with $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}$ of the parent atom.

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/9255/02 and 1/7314/20, and APVT-27030202).

## References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bolm, C., Weickhardt, K., Zehnder, M. \& Ranff, T. (1991). Chem. Ber. 124, 1173-1180.
Boyle, R. C., Mague, J. T. \& Fink, M. J. (2004). Acta Cryst. E60, m40-m41.
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Comerlato, N. M., Crossetti, G. L., Howie, R. A., Tibultino, P. C. D. \& Wardell, J. L. (2001). Acta Cryst. E57, m295-m297.

Dupont, J., Ebeling, G., Delgado, M. R., Consorti, C. S., Burrow, R., Farrar, D. H. \& Lough, A. (2001). Inorg. Chem. Commun. 4, 471-474.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Ghosh, A. R., Packiaravan, M. \& Cappiello, J. (1998). Tetrahedron Asymmetry, 9, 1-45.
Kuhn, N., Grathwohl, M., Steimann, M. \& Henkel, G. (1998). Z. Naturforsch. Teil B, 53, 997-1003.
Luo, X.-M., Chen. X.-H., Shanmuga Sundara Raj, S., Fun, H.-K. \& Zhu, L.-G. (1999). Acta Cryst. C55, 1220-1222.

Müller, D., Umbricht, G., Weber, B. \& Phaltz, A. (1991). Helv. Chim. Acta, 74, 232-240.
Oxford Diffraction (2001). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Oxford Diffraction (2003). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Slyudkin, O. P., Khlestkin, V. K., Tikhonov, A. Y., Naumov, D. Y., Izarova, N. V. \& Turchinovich, A. A. (2002). Russ. J. Inorg. Chem. 47, 60-67.
Uozomi, Y., Kyota, H., Kato, K., Ogasawara, M. \& Hayashi, T. (1999). J. Org. Chem. 64, 1620-1625.


[^0]:    (C) 2004 International Union of Crystallography

